Message from our President
Numbers from CDN, Canadian Dairy Network, have proven that Brown Swiss heifers have 8% more unassisted or easy calving. I was really surprised by the number of live born calves Brown Swiss had 96%, Jerseys 90% and Holstein 89% live born. Out of 100 calves you have 7 more alive than with Holstein. Brown Swiss also outperformed Holsteins in herd life, lactation persistency, non return rates, and days open. If you would like to know more about these numbers you can log onto the CDN website and go to new proof expression for functional traits.

Have you booked your room for the AGM, in Kanata for the 27th-29th of March? I hope to see many of you there. We will visit some of our best Brown Swiss herds in Canada at Bill Butlers and the Drumonds. Maybe 2008 will be
the year you take your wife on a short vacation. Lori Bates with her crew has organized an interesting meeting for everybody. We will also provide translation like we did last year in Quebec.

Jessie is busy preparing everything for the meeting. Otherwise things are running pretty smoothly in the office. Jessie and I will attend the Brown Swiss World conference in Mayrhofen in Austria, from the 17th to the 20th of April. It will be interesting to meet fellow breeders in Austria and talk with them.

Brown Swiss
Components that pay,
Cows that last
Your President, Ernst Gubelmann

Canadian Brown Swiss and Braunvieh Association Annual General Meeting Hosted by the Ontario Brown Swiss Club, March 27-29, 2008
 Hotel Information:

Thursday, March 27th

- 9:00 a.m. Board of Directors Meeting
- Evening, wine \& cheese \& welcome

Friday, March 28th

- 8:30 a.m. Registration,
- 9:00 a.m. Annual General Meeting
- Evening Banquet (awards, fun auction, local entertainment)
Saturday, March 29th
- Barn Tours
- Morning Derry Way Swiss, Bill Butler's,

Manotick, ON

- Travel to Shawville, Quebec to Shady Lane Swiss - Barrie \& Diane Drummond and Ken \& Shannon Drummond
- Lunch will be served and followed by a barn tour

A block of rooms at a special rate have been reserved at the Country Inn \& Suites 578 Terry Fox Drive, Kanata, Ontario, Phone: 613-599-7767

Please call as soon as possible to reserve your room. Please mention you are attending the Canadian Brown Swiss \& Braunvieh Meeting for your special reate!

If you have any questions, please contact Lori Bates, 705-428-0255.

Every effort will be made to have translation available for the meeting so please join us.

Progressive Sire Program

The first bulls gone through this young sire program have proofs now. Two bulls in particular have caught my eye, they are Wonderment and Victor. If any of you are interested in any of these or any other, please contact me at 450-264-9385. If we get at least 100 doses ordered of any particular bull we could go ahead and make an importation. The more semen is ordered the cheaper the unit price, because shipping costs are the same for 1 unit or 500 .

Proven Bulls:

- SCF Jet Victor (Jetway X Emory Victoria) +470 Milk, +1.30 Type
- Top Acres C Wonderment (Collection X Jad Wizzbang) +547 Milk, +1.00 Type
- Kruses Big T Fastbreak (Bigtime X Jade Fantasy Vix) -877 Milk, +1.00 Type
- Siegerts Jalen Sea Jackpot (Seattle X Jetway Jalen) +214 Milk, NA Type

New Young Sires:

- Jo Dee James Trooper (SCF Emory James X Savage Leigh Denmark Trixie EX-93)
- Shen Val OMF Leg Tray ET (Legacy X GS Ensign Tootie EX-93)
- Old Mill Den Snickpack ET (Denmark X Snickerdoodle EX-94)
- Onword Vic ET (Top Acres Jet Pilot X Onword Combo Viola EX-92)
- Kruses LI JamesKooter ET (James X Kruses LI Simon Karla Vix ET)

Markus Mueller

The All Canadian Contest results will be announced at the Annual General Meeting Banquet on Friday, March 28th, 2008 and published in an upcoming edition of the Ontario Dairy Farmer. A listing of the winners will be mailed to each member with their information package following the Annual General Meeting. Once again thank you to the participants for entering such great animals and to our judges
 for their time judging this contest.

New Number 1 Net Merit !

54BS374 VIGOR has cracked Beamer's hold on the number 1 Net Merit position...this is despite Beamer increasing \$33! Vigor's proof is remarkably balanced, ranking well in nearly every major category. Consider for Active Bulls, Vigor ranks in the Top 10 for Protein, Udder Composite, Somatic Cell, Productive Life and Daughter Pregnancy Rate!
54BS317 TD scored again, improving across the board, and jumps into the Top 10 Net Merit list for the first time! He is also \#2 for Type and \#3 for DPR and Udder Composite.

54BS330 DENVER more than doubled daughters going over 1100, and maintained his production and type credits, while improving for Udder Composite. Watch for numerous daughters in the show rings,,and bull mother lists.
206BS10 BEAMER As stated earlier, Beamer released his grip on \#1, but he didn't go quietly... In fact, he improved across the board for production, SCS and DPR. He is now the \#1 DPR bull with and impressive +1.8 , or a half point improvement. He remains the elite bull of the breed for instant fat and protein.
For full details, visit our web site at www.BrownSwiss.com
Dan Gilbert, New Generation Genetics, Inc.

Brown Swiss ID Errors on 4 Foreign Bulls

We recently were made aware that the registration number and parentage information on 4 foreign bulls were in error. The bull names, all genetic evaluation information for production and type are correct. Just the associated registration numbers on two pairs of bulls were switched in the USA alias area of their records on the 38 file. They are listed below. We do not plan to resend the bull listings.

1. Hanny Swiss Ace Wagor *TM
2. Barmettler BS Ace Agio-ET *TM
3. Sw. Binder Westgate Goliath ET
4. Gubelman Denmark Daniel
reg. no. should be 199096, not 198806 reg. no. should be 199097, not 198804 reg. no. should be 198804, not 199097 reg. no. should be 198806, not 199096

We have made these corrections on the available sire list. The bull list on our website will be correct. We apologize if this has caused you any inconvenience.

Roger R. Neitzel, BSCBA-USA

Brown Swiss Bulls Proven in Switzerland

The underlying problem is that Brown Swiss bulls proven in Switzerland are being assigned a registration number at CLRC that has the first three digits (normally "110" or "120") truncated from the front the the registration number used in Switzerland. Therefore, as progeny of these bulls are born in Canada and registered through CLRC, the registration number of their sire is assigned as the "shorter" one used by CLRC. This registration information is forwarded to CDN and passed on to other industry partners (i.e.: milk recording) for use at the national level. Since Switzerland uses the longer (normally 12 digits starting with 110 or 120) registration number nationally it is also submitted to Interbull for MACE evaluations. When CDN receives the Interbull files we can only link the MACE evaluations to the shorter registration number used by CLRC if we already have a cross-reference link established between the two registration numbers. Todate, a process to assign such a cross-reference link for these Brown Swiss bulls from Switzerland has not established, which has caused some problems displaying the proper MACE evaluation for some of these bulls and for calculating the proper Parent Averages for Canadian daughters of some of these bulls. CDN will be contacting CLRC in the near future to find a solution to this situation to be implemented as soon as possible, minimally before the next genetic evaluation release in April 2008.

Just prior to the official genetic evaluation release and updates to the CDN web site that were made public yesterday, we identified four Brown Swiss sires with progeny that fell into this situation and we were able to correct the problem. Since then, however, we have identified the two following sires that are affected and have at least one registered daughter born in Canada. The current Parent Averages of progeny of these bulls is therefore not based on their sire's MACE evaluation.

CLRC Registration
BSCHEM471154422
BSCHEM15043440

Swiss Registration

 BSCHEM110471154422 BSCHEM120015043440Name
BARMETTLER SABRI CHEVRON*TM
SORRY ET
Brian Van Doormaal, CDN

CDN Breed Highlights for Brown Swiss,

 Brian Van Doormaal
"Ransom" and "Florida" Survive Important Changes for Brown Swiss

The introduction of a revised LPI formula, the genetic base update and other genetic evaluation enhancements, yield an increased level of re-ranking within the Brown Swiss breed this round. Blessing Prophet Ransom manages the highest net gain of 362 LPI points and remains the breed leader at \#1 LPI with R Hart Cartoon ET landing a distant \#2 LPI. The Top 5 LPI bull list is rounded out by Quincy Even Special ET, Forest Lawn Pat Joytrek ET and SunMade Gar Bro Pronto ET taking \#3 to \#5 LPI, respectively. Since his first official proof last round, Swiss Dream Colby Fortune experiences significant decreases for production and type, which translates to the largest LPI drop this round from \#7 to \#54 LPI. Also noteworthy are two US-proven sires that
receive their first official domestic evaluation, namely Hilltop Acres En Dynasty ET (\#16 LPI, \#4 Milk, tied \#10 Conformation) and Blessing Emerald Absolute ET (\#27 LPI). On the cow side, the reshuffling continues as Kruses Prelude Florida ET loses 372 points but holds on at \#1 LPI (\#1 Fat) and is followed by Poplar Oak Caley (\#2 LPI, \#1 Milk and Protein) and Gubelman Camelot Katie ET at \#3 LPI. The biggest surprise this round is Top Swiss Emory Vanna who doubles her LPI and catapults from \#312 to \#6 LPI. Florida confirms her genetic superiority by producing two of the three highest newly indexed cows, namely Anfield JP Fabulous ET (\#9 LPI) and Swiss Fantasy Dynasty France (\#12 LPI), with Gubelman Cartoon Maxine arriving at \#11 LPI (daughter of Gubelman Envy Mindy at \#23 LPI and sister to Gubelman Banker Monalisa at \#16 LPI).

PUBLIC SERVICE ANNOUNCEMENT

Herb McLane, Executive Vice President, Canadian Beef Breeds Council: 403.730.0350

More than 500 beef cattle producers, leading genetic researchers and innovators, feedlot operators and other service providers involved in the global cattle industry will gather in Calgary late June 2008 at the Beef Improvement Federation Annual Research Symposium \& Annual Meeting.

This yearly event is typically held in the US and is North America's leading forum through which genetic advancements and innovations in beef production are showcased and discussed.

This is the third time the conference will be held in Canada and the second time the Canadian Beef Breeds Council-the national association that represents Canada's purebred beef cattle breed associations and their producer-members-will host. The number of Canadian seedstock and commercial producers and industry service providers attending the event is expected to be significant.
The Conference theme is 'Beef Beyond Borders' and topics will explore current and future genetic technology and programs for the North American beef producer. Extensive Canadian content and discussion including the 'Canadian perspective' will be delivered by scientists and producers with topics to include:
Trends in Value-Added Marketing Challenges; Integrated Producer Perspective; and Emerging Technologies in Genetics. Key Canadian presenters include: Dr. Bob Kemp on Collection and Application of Genetic Information from a Canadian Perspective, and Brad Wildeman, President Pound-Maker Feeders and Vice President of Canadian Cattlemen's Association on Producer and Industry Innovation Going Forward. Herb McLane, Executive Vice President of Canadian Beef Breeds Council and Duncan Porteous, Project Manager, will discuss an ongoing special Canadian initiative-the Purebred Risk Assessment Project that is collaboratively developing risk mitigation strategies and tools for Canada's purebred beef cattle producers in response to current research into areas of risk in the sector.
The Beef Improvement Federation Annual Research Symposium \& Annual Meeting is held June 30 to July 3, 2008 at the Hyatt Hotel in Calgary, Alberta. Full Program details and registration are available at: www.canadianbeefreeds.com

Kincardine Show Results Correction

The Junior Champion of the 2007 Kincardine Show was Norbella Parker Nirvana and Reserve was Gubelman Draft Deanna, not as listed in the last newsletter. Sorry for the confusion and congratulations to the owners!

CanWest DHI Elects Board Chair and Vice Chair

Guelph, ON (January 10, 2008) John Bongers was re-elected Chairman of the Board of Directors and Gordon Ell was re-elected Vice-Chairman at a regularly scheduled Board Meeting of CanWest DHI held January 8th, 2008 in Toronto, following the 27th Annual Dairy Herd Improvement General Meeting.
A dairy producer from Leeds County, in eastern Ontario, John Bongers begins his fifth year on the CanWest DHI Board and served previously on the Ontario DHI Board.
Gordon Ell, a milk producer from Kronau, Saskatchewan begins his fourth year with the CanWest DHI Board and served previously on the Holstein Canada Board.

Joining John Bongers and Gordon Ell on the CanWest Executive Committee are Directors Michael Hall of Mountain, Ontario and Lyle Martin of Brussels, Ontario.

CanWest DHI was formed in March 2004 as a partnership of Western Canadian DHI and Ontario DHI and provides herd management services to 4,500 dairy producers from Ontario through British Columbia.

CanWest DHI Director Elections

Guelph, ON (January 10, 2008) Cindy Whytock was elected as Director by acclamation for Zone 3, which encompasses the counties of Bruce, Grey, Wellington, Dufferin, Simcoe and Haliburton Counties and Regional Municipalities of York and Durham and District Municipality of Muskoka.
Cindy and her husband Wayne milk 40 Holsteins near Teeswater located in Bruce County. Cindy has been a DHI delegate for the past ten years and is actively involved in her local Holstein Club and 4-H Association. Cindy begins her first year on the Board as Zone 3 Director.
John Mooney was elected as Director by acclamation for Zone 6, which encompasses the Northern Ontario Districts.

John and his wife Suzanne live in Massey, ON and milk 65 cows in a robot installation. They farm about 350 acres and John has been an active DHI delegate for many years.
Ken Schwaerzle was appointed for a one-year term by the BC Milk Producers Association as Director for British Columbia.
Ken and his wife Debi milk 40 Holsteins near Agassiz, BC. Ken is Past President of the BC Holstein Association.

Highly Anticipated TRESSEL Now Available at Select Sires

PLAIN CITY, Ohio, Dec. 20, 2007-7BS813 Savage-Leigh TRESSEL ET *TM, bred by Jamie and Chip Savage, Knoxville, Md., has been identified as a Super Sampler* at Select Sires. Because of his elite, show-winning pedigree, TRESSEL has also been chosen as a Showcase Selections(tm) sire. With these designations, TRESSEL semen is now available to all Brown Swiss breeders.
"TRESSEL is a highly anticipated Showcase Selections sire that is bred to carry on the goal of the Showcase program and the winning tradition of the Tippy family," said Brian Garrison, dairy sire analyst for Select Sires. "He is appropriately named after successful college football coach Jim Tressel, as both have a winning history and tradition.

TRESSEL's dam, GS FL Tippy ET "2E94", is a five-time All-American nominee and a two-time All-American and has accomplished what very few cows in the breed have achieved. Thirty All-American nominations have been earned by her daughters and granddaughters and four of Tippy's daughters have scored Excellent "93" and
have produced outstanding records of up to 41,000 pounds of milk. Tressel's sire, Top Acres EP Premium ET, has gained popularity and breeder appreciation as he has added scores of daughters late in his life. Premium specializes in udder improvement and is known to make tall, long, dairy and stylish heifers and cows and complements Tippy's impressive frame and dairy strength.
"A perfect choice for Showcase Selections, TRESSEL is a big, growthy, straight-lined bull with the balance and dairy strength that is increasing in demand. He's bred right, looks right and has the perfect game plan to make the wining kind," Garrison said.

Based in Plain City, Ohio, Select Sires Inc., is North America's largest A.I. organization and is comprised of 10 farmer-owned and -controlled cooperatives. As the industry leader, it provides highly fertile semen as well as excellence in service and programs to achieve its basic objective of supplying dairy and beef producers with North America's best genetics at a reasonable price.

2007 Excellents (January - December 2007)

Reg.	Name	Class	Score	Multiple	Owner	Province
BSCANF41072	NOR BELLA JETWAY TABITHA	EX	93	3E	NORVAL MCCONNELL	ON
BSCANF10034075	GUBELMAN CONAN DANIELLE	EX	92	3E	ERNST GUBELMANN	ON
BSUSAF884309	MAYCCO FINELEE ET	EX	92	2 E	MAY FARM	ON
BSCANF10035522	ISIDORE STARBUCK SAHARA ET	EX	92	1 E	FERME LEHMANN	QC
BSCANF10033837	SHADY LANE SWISS FLSJ TAMMY	EX	92	1 E	BARRIE A \& DIANE DRUMMOND	QC
BSCANF9359292	EVENTIDE DUKE DAISY	EX	92	1E	EDENCREST SWISS	ON
BSCANF8646311	CRIKSIDE TRUDAWN	EX	91	2 E	CRIKSIDE FARMS	MB
BSCANF39678	EDENCREST IMAGE LEILA	EX	91	2 E	EDENCREST SWISS	ON
BSCANF10035151	SWISS DREAM DENMARK URIANNE ET	EX	91	2 E	SWISS DREAM FARM	MB
BSCANF9350725	NOR BELLA COLLECTION SATIN	EX	91	1E	NORVAL MCCONNELL	ON
BSCANF9350750	NOR BELLA BANKER ECHO	EX	91	1 E	NORVAL MCCONNELL	ON
BSCANF8377674	GUBELMAN DORA'S REGINA	EX	91	1 E	ERNST GUBELMANN	ON
BSCANF8509289	SPRING ROSE JAMAR JEM	EX	91	1 E	BIG SPRING FARMS LTD	ON
BSCANF8460650	PER SWISS JANET 2	EX	91	1 E	HENRY S. MARTIN	ON
BSCANF41319	EDENCREST KING MOLLY	EX	90	4E	EDENCREST SWISS	ON
BSCANF39723	DUN ROVIN ACRES JETWAY VIOLET	EX	90	4E	DUN ROVIN ACRES LTD	ON
BSCANF39556	GOULAISE CURT HEVEA	EX	90	4E	FERME GOULAISE INC.	QC
BSCANF40379	SWISS DREAM GORDON OLMA	EX	90	3E	SWISS DREAM FARM	MB
BSCANF39440	NOR BELLA PRELUDE LASS	EX	90	3 E	NORVAL MCCONNELL	ON
BSCANF10034677	SPRING ROSE MONACO BAMBI	EX	90	3 E	STEPHEN HENHOEFFER	ON
BSCANF39077	NOR BELLA T J SALTINA	EX	90	3E	NORVAL MCCONNELL	ON
BSCANF41564	GUBELMAN FRED MIRACLE	EX	90	3E	DAETWYLER FARMS LTD.	ON
BSCANF38147	SHADY LANE SWISS BLOSSOM	EX	90	3 E	BARRIE A \& DIANE DRUMMOND	QC
BSCANF8377677	GUBELMANN REGGIANO GINA	EX	90	2 E	ERNST GUBELMANN	ON
BSCANF40634	HILLCREST JETWAY JEAN 1J	EX	90	2 E	BRADLEY J FREE	ON
BSCANF37815	ISIDORE EMORY DAHLIA	EX	90	2 E	FERME LEHMANN	QC
BSUSAF908306	MAYCCO FANNY	EX	90	2 E	LÉONARD CHABOT	QC
BSCANF10034308	SWISS LAND CAMELOT BRIDGETTA	EX	90	2 E	JEANNOT \& LISE DESHARNAIS	QC
BSCANF10036073	BANZ JEMSTONE MICKI	EX	90	1E	FERME BLYVIAN INC.	QC
BSCANF10035623	FERNANDALE PENTACLE LAURA	EX	90	1 E	FERME F.X. PICHET INC.	QC
BSCANF8444681	SWISS DREAM PRELUDE GALAXIE	EX	90	1E	SWISS DREAM FARM	MB
BSCANF8444661	SWISS DREAM GINO BETHANY	EX	90	1E	SWISS DREAM FARM	MB
BSCANF8806456	SWISS DREAM BANKER KATTLIN	EX	90	1E	SWISS DREAM FARM	MB
BSCANF39932	SWISS DREAM PRELUDE BELLINA	EX	90	1E	SWISS DREAM FARM	MB
BSCANF10033918	SWISS LAND DENMARK BRENDA ET	EX	90	1 E	BATESDALE FARMS	ON
BSCANF10033889	BEAULIEU CAMELOT PATRICIA	EX	90	1E	FERME LEHMANN	QC
BSCANF8571034	CLEARCREST DENMARK DANIELLE	EX	90	1 E	HAROLD \& MARSHA JELINSKI	ON
BSCANF8462725	POPLAR OAK DARLA II	EX	90	1E	FOUR OAK FARMS	MB
BSCANF8377675	GUBELMAN PRELUDE PETRA	EX	90	1E	ERNST GUBELMANN	ON
BSCANF8377694	GUBELMAN DANIEL WANDA	EX	90	1 E	ERNST GUBELMANN	ON
BSCANF39732	GUBELMAN GORDON DEVA	EX	90	1E	ERNST GUBELMANN	ON
BSCANF41512	MON PARADIS STYLISH STAR	EX	90	1E	FERME MON PARADIS L'ISLE-VERTE INC.	QC
BSCANF10033834	SHADY LANE SWISS RHD EUDORA	EX	90	1E	BARRIE A \& DIANE DRUMMOND	QC
BSCANF101157256	SHADY LANE SWISS FLSJ EMPRESS	EX	90	1E	BARRIE A \& DIANE DRUMMOND	QC
BSCANF100482014	REDAM MASCOT JUMO	EX	90	1 E	FERME REDAM INC	QC
BSCANF9350736	NOR BELLA PETE ROSE DAZZLE ET	EX	90	1E	NORVAL MCCONNELL	ON
BSCANF9350716	NOR BELLA PLAYBOY ERIKA	EX	90	1E	NORVAL MCCONNELL	ON
BSCANF9481206	NOR BELLA DOMINATE PETALS	EX	90	1E	NORVAL MCCONNELL	ON
BSCANF8377728	GUBELMAN EXCITE DAPHNE	EX	90	1E	ERNST GUBELMANN	ON
Congratulations to the breeders and owners of these great animals!						

Prov

Comp \quad OWNER	
3	992 ERNST GUBELMANN
4	979 ERNST GUBELMANN
5	883 ERNST GUBELMANN
7	880 BIG SPRING FARMS LTD
1	872 ERNST GUBELMANN
2	872 HEIDI \＆WALTER VON AH
4	859 ERNST GUBELMANN
2	846 ERNST GUBELMANN
5	840 HEIDI \＆WALTER VON AH
1	833 ERNST GUBELMANN
5	826 ERNST GUBELMANN
0	821 REYER \＆ANNA VAN DER STEEGE

 $\stackrel{\rightharpoonup}{2}$

菏

关
ö

Production Records（January－December 2007）Ranked by Composite Milk，Fat \＆Protein

○コニロコニココニのコの

엉 ：ט：

 anacanacanac

〇NI（＋666）SLANTNV SAG AWAGA 002

Д్లిల్లి శ్లి ఫ్

 $N \rightarrow+$ nーナ $N \rightarrow N O N+\rightarrow$
 $\underset{\infty}{\infty} \infty_{\infty}^{n} \dot{\infty} \infty \infty \infty \infty \bar{\infty}$
$\begin{array}{ll}\text { POPLAR OAK CALEY } & \text { GP } \\ \text { EASTWIND DAVID JENNY } & \text { GP }\end{array}$ $\begin{array}{ll}\text { EASTWIND DAVID JENNY } & \text { G } \\ \text { GUBELMAN EAGLE UREKA } & \text { V }\end{array}$ CRIKSIDE DAZZLE GUBELMAN PRESIDENT INDIANA GP GUBELMAN PRESIDENT INDIANA BSCANF8462747 BSCANF8729582 3 BSCANF8377711 BSCANF8646349 BSCANF8377733

 8 BSCANF10145553
 0
0
0
0
0
∞
\jmath_{1}
\vdots
0
0
0
0 11 BSCANF7317941 8؟6ऽst8ANVOSG ZI

1030 FERME SABONO
1006 HEIDI \＆WALTER VON AH
955 HEDI \＆WATER VON AH
953 ERNST GUBELMANN
914 KATHARINANDRIIT
879 HEIDI \＆WALTER VON AH
858 STEPHEN HENHOEFFER
850 ERNST GUBELMANN
850 SWISS DREAM FARM
847 ERNST GUBELMANN
824 BIG SPRING FARMS LTD
813 FERME BERTNOR INC 1052 MAY FARM

 916 STEPHEN HENHOEFFER
897 HANS SIGNER
 879 ERNST GUBELMANN 847 STEPHEN HENHOEFFER 839 HEIDI \＆WALTER VON AH 833 ANDREAS PUENTER 861 ERNST GUBELMANN 791 FERME GOULAISE INC． 708 STEPHEN HENHOEFFER
625 DUN ROVIN ACRES LTD

 ద్户口内甾甾（苗 웅 엉 웅잉ㅇㅇㅇ GUBELMAN BANKER DIXIE
GUBELMANN REGGIINO GINA 1 BSCANF8377667
2 BSCANF8377677 2 BSCANF8377677

 $6 \begin{aligned} & 6 \text { BSCANF8447413 } \\ & 7 \text { BSCANF9272035 }\end{aligned}$

 11 BSCANF9348082

\qquad 청엉 웅 잉 O GUBELMAN PRELUDE DOLORES ET E7 DRUMHAGGART MAP PRELUDE LADY POPLAR OAK PROPHET CECLLIA ET ET
SWISS KINE HORIZON TAYLOR MCF DEREK MOKA
SWISS DREAM COLBY

SWISS DREAM COLBY CANDY
GUBELMAN PRELUDE LYNN
TOP SWISS PREEIDENT ISRAEL gubelman denmark dallas BSCANF9359292
BSCANF 10035965
BCSANF377650
BSCANF8338451 BSCANF8338451 BSCANF844684
BSCANF848541 BSCANF 100490875 BSCANF8447718 BSCANF8377671 ． 11 BSCANF8455939

签
 ROSEBANK FRANZ OLIVE
SPRING ROSE JOYTREK BROOKE SPRBELMAN CONAN DEVON SWISS DREAM DENMARK KARIN
GUBELMAN JEMSTONE GREDEL SPRING ROSE MONACO SORRELLE BANZ JETWAY META

首曷

 ZZ
M
0
0 SPRING ROSE JETWAY BUNS
TOP SWISS GORDON SOMONA 4
0
0
0
0
0
0
0
0
0
0
0
0
0 gubelman conan danielle SPRING ROSE P R SADIE

GUBELMAN GORDON DEVA
ROSEBANK PETE MOMMY RED
ROSEBANK PETE MOMMY RED
SWISS MOUNTAIN ECHO B RENEE \square
男

ornvg drmlar Saqov ninoy nna

Y Yr Old
12 BSCANF 10034806 2 BSCANF10033821
3 BSCANF10034587
4 BSCANF8006815
5 BSCANF9331352
6 BSCANF10035039
7 BSCANF41573
8 BSCANF10034076
9 BSCANF10034538
10 BSCANF10034129
11 BSCANF8509199
12 BSCANF10035432
Mature Cow号

BSUSAF884309
BSCANFDR7510
 4 BSCANF1003410 5 BSCANF40326
6 BSCANF41137
 9 BSCANF40531 9 BSCANF40531
10 BSCANF39732 11 BSCANF41120 12 BSCANF10034613 12 BSCANF10034613
Aged Cow

[^0]

星晏：

 ó ó o

0

学鼠曷思
 \＃莴品：
\＃啪甹：

 －ロ

CANADIAN DAIRY NETWORK / RÉSEAU LAITIER CANADIEN

CANADIAN DAIRY NETWORK / RÉSEAU LAITIER CANADIEN															
JANUARYIJANVIER 2008			TOP 5 CANADIENNE HERDS BY LPI/ 5 MEILLEURS TROUPEAUX CANADIENNE SELON L'IPV												
$\begin{array}{\|l\|} \hline \text { Rank } \\ \text { Rana } \end{array}$	$\begin{aligned} & \text { LPP } \\ & \text { IPV } \end{aligned}$	No. Cows No. Vaches	Name of Farm / Owner Nom de la Ferme / Pro priétaire	$\begin{gathered} \text { City } \\ \text { viill } \end{gathered}$	Province	$\begin{gathered} \substack{\text { Maik } \\ \text { Lait }} \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Fat } \\ \text { Gras } \end{array}$	Protein Protéine	$\begin{aligned} & \text { Fat \% } \\ & \text { \% Grat } \end{aligned}$	Protein \% \% Protéin	$\begin{aligned} & \text { SCS } \\ & \text { ccs } \end{aligned}$	CONF	$\begin{aligned} & \text { MS } \\ & \text { SM } \end{aligned}$	$\begin{aligned} & \hline \text { F\&LL } \\ & \text { P\&MM } \end{aligned}$	$\begin{aligned} & \hline \mathrm{DS} \\ & \mathrm{PL} \end{aligned}$
	1194	26	FERME J-P COTE \& FILS INC.	NEUVILLE	PQ	529	11	10	-0.16	-0.10	2.95	3.1	2.5	5.2	1.8
2	656	45	FERME ACTON INC	ST-ANDRE D'ACTON	PQ	151	1	3	-0.09	-0.02	2.95	2.8	2.2	3.5	1.0
3	546	18	FERME PATRIMONIALE INC.	St-AUGUStin	PQ	83	2	2	0.00	-0.01	2.95	3.0	2.5	2.2	2.1
4	465	24	DOMIINQUE PETIT	st-Valerien	PQ	12	0	1	0.01	0.01	2.98	4.1	1.7	4.9	3.9
5	441	10	FERME JEAN-NOEL GROLEAU INC.	COMPTON	PQ	143	5	2	0.02	-0.04	2.98	1.2	0.8	-0.4	3.4

足

Canadian Dairy Network

660 Speedvale Avenue West, Suite 102 Guelph, Ontario, Canada. N1K 1E5

Phone: (519) 767-9660 Ext. 101
Fax: (519) 767-6768
E-mail: VanDoorm@cdn.ca

Base Change Summary - January 2008

Each year, the genetic base used to express genetic evaluations in Canada is updated in conjunction with the first official release. The definition of each genetic base used is therefore as follows:
Breed(s) Traits Genetic Base Definition Used

All Production Cows born during a 3-year period centred seven years ago (2000, 2001 or 2002) that have test day records in the Canadian Test Day Model genetic evaluation analysis.

Holstein Conformation Proven bulls born in the most recent complete 10-year period (1993 to 2002).

Coloured Conformation Proven bulls born in the most recent complete 15-year period (1988 to 2002). For Canadienne and Milking Shorthorn breeds, the base period starts with proven bulls born in 1984.

The table below indicates the amount of base change realized in 2008 compared to 2007 for each trait and breed.

Base Changes for 2008 Versus 2007

	AY	BS	CN	GU	HO	JE	MS
LPI 1	131	45	-50	119	126	141	-42
Milk (kg)	58	27	26	26	77	32	-6
Fat (kg)	2.2	2.1	0.9	2.3	2.3	1.7	-0.7
Protein (kg)	2.4	1.4	0.7	1.2	2.5	1.8	-0.3
Conformation	.70	.05	-.67	.47	.81	.65	.10
Mammary System	.67	.00	-.55	.68	.67	.63	-.31
Feet \& Legs	.72	.01	-.74	.17	.54	.42	.17
Dairy Strength	.44	.47	-1.15	-.03	.62	.64	.03
Rump	.29	-.35	-.11	.37	.30	.42	-.05
Herd Life 2	.51	-.07	.27	.29	.13	.32	.05
Somatic Cell Score 3	-.02	-.02	.00	.03	-.02	-.02	.00
Daughter Fertility 2	-.05	.66	.63	.11	-.21	.33	-.89

[^1]
Demystifying Inbreeding

Canadian Dairy Network
In recent years, "inbreeding" has become a common buzz word among dairy producers and within the national and international dairy cattle industry. Unfortunately, the circulation of information by word of mouth can lead to some misunderstandings and inaccuracies. What is inbreeding? How do we measure it? Is inbreeding good or bad? How much attention should be paid to inbreeding in genetic selection decisions? Here are the facts about inbreeding as it relates to dairy breeds in Canada, which should help to clarify some of the common myths that currently exist.

What is Inbreeding?
In technical terms, inbreeding is defined as "the probability that the two parental alleles of an individual, located at the same locus, are identical by descent". To better understand what this means in practical terms, one must first have a basic knowledge of genes and alleles. Dairy cattle possess 30 pairs of chromosomes and each gene has a designated location on every chromosome, called a locus. For any gene, there may be multiple forms that exist, called alleles, which will be expressed as an alternative form of a trait. Each animal receives one allele from each parent. When an animal receives the same allele from both parents it is said to be homozygous for that gene while animals with different alleles of a gene are considered heterozygous. Animals with common ancestors are more likely to have inherited the same allele of a gene from each parent compared to progeny from unrelated parents. Therefore, in simpler terms, inbreeding values, expressed as percentages, reflect the "probability" that an animal has inherited the same gene that its parents have both received from a common ancestor and this probability increases depending on how close the parents are genetically related.

How is Inbreeding Measured?
Computer programs are used to calculate inbreeding values based on all known pedigree information available. This means that an animal's inbreeding percentage is dependant upon the amount of pedigree data recorded. For example, the calculated inbreeding value of an animal with a known sire but no recorded dam will always be 0.0% since the parents are considered to be totally unrelated. Similarly, inbreeding values calculated using two or three generations of pedigree will always be lower than those based on complete pedigree data for ten or even twenty generations. This fact means that all estimated inbreeding values are a function of the completeness of pedigree used in their calculation. As an example, Figure 1 shows inbreeding trends in the Canadian Holstein population when different amounts of pedigree data are used for the calculations. Here it is easy to see the lower inbreeding levels that result when 30 or even 40 years of pedigree data are used compared to 50 years or more, with the difference being about 3 percent for recent birth years. This leads to an important message as it relates to inbreeding values used by genetic mating programs offered by various A.I. companies. Since each program uses varying amounts of pedigree data, the calculated inbreeding values will automatically be underestimated when less pedigree is considered. This means that the resulting mating recommendations would
differ even though the programs may suggest the usage of a common minimum inbreeding tolerance level (i.e.: 6.25% for example). The only way for all mating programs to be equal in the inbreeding values considered is if they are computed based on the exact same pedigree data.

Figure 1: Inbreeding Trends in Canadian Holsteins Depending on Pedigree Data Used

Is Inbreeding Good or Bad?

A common myth about inbreeding is that it always has a negative, undesirable effect. Looking back in history, it is easy to find elite breeders that used "linebreeding" to concentrate positive genes in the progeny, which was achieved by mating family members together. The resulting animals were therefore more inbred than usual but the increased homozygosity of their genes made them a more uniform group. With this in mind, inbreeding is not always bad and, in fact, may be desirable for specific matings. On the other hand, for the longer term viability of a breed, genetic selection requires genetic variation, which is decreased as average inbreeding levels in the population rise.

Inbreeding and heterosis have opposite effects. Inbred animals will experience some degree of inbreeding depression for certain traits, which basically means that their performance for those traits will be reduced because they are inbred. When unrelated animals are mated, the opposite effect occurs, called heterosis. Heterosis refers to an increased performance of the progeny compared to what is expected based on the average of its parents. Unrelated animals may come from the same breed but the phenomenon of heterosis is easier to understand with crossbreeding, which produces progeny that are zero percent inbred since the parents would clearly not have any genes in common inherited from their ancestors.

A second myth about inbreeding is that the effect of inbreeding depression is the same for all animals with the same calculated inbreeding value. This statement is false for various reasons. Firstly, as explained previously, two animals may have the same estimated inbreeding value but they are not truly equal if one was based on much more
pedigree depth compared to the other. The animal with the least amount of available pedigree data would have an estimated inbreeding value that is more of an underestimate of its true inbreeding level. Secondly, as previously outlined in the definition, inbreeding values are "probabilities". Without analyzing the exact DNA makeup of both animals it is impossible to really know which genes each animal randomly inherited from their parents. For example, two animals with an estimated inbreeding value of 8% will have different degrees of homozygosity in the genes they inherited so their true inbreeding level will vary around this estimated value, which is true even if the two animals are full-sibs.

How Important is Inbreeding?
A common perception among dairy producers is that any observed decrease in reproductive performance that they may be experiencing in their herd is due to the increase in average inbreeding levels within dairy cattle populations. Given the relatively small effect of inbreeding depression on measures of fertility, this is not a strong reason for wanting to control inbreeding. Some producers are strictly against any matings that would yield an offspring with an inbreeding value above a given tolerance level, say 6.25% for example. While inbreeding trends in each breed and within each herd need to be monitored, the strict use of minimum tolerance levels is not the ideal way to control inbreeding. This practice could have major consequences on the genetic gains achieved. Optimal approaches for controlling inbreeding levels balance the benefits of genetic progress with the undesirable effects of inbreeding depression, both in the short and longer term. Also, the effects of inbreeding depression have been found to be quite linear in that the impact of a one percent increase from 2 to 3% inbreeding leads to the same degree of reduced performance as the same increase from 10 to 11\% inbreeding. Therefore, what makes a given tolerance level, say 6.25% for example, so magical that a mating yielding 6.5% inbreeding is prohibited but one yielding 6% is acceptable? This point is amplified by the fact that all estimated inbreeding values are dependent upon the amount of available pedigree information.

Summary

It seems that inbreeding is a growing concern for producers in all dairy breeds due to the higher rates of increase over recent generations. The rising levels of inbreeding are an expected by-product of genetic progress in a population and surely need to be monitored. As with most things, a balance is required between high rates of genetic gain and increased inbreeding levels. While computerized mating programs are an excellent means for identifying matings that would produce highly inbred offspring, approaches that account for expected levels of inbreeding depression are preferred over the use of minimum inbreeding tolerance levels for disregarding potential matings. Research aimed at estimating the impact of inbreeding depression for various traits is ongoing at Canadian Dairy Network (CDN), which will be a topic for a future CDN article. In the meantime, remember that estimated inbreeding values on an animal by animal basis are dependent upon the completeness of pedigree data available and simply reflect the "probability", not necessarily the reality, that the animal has inherited the same gene from both parents, which they received from a common ancestor.

Author: Brian Van Doormaal
Date: January 2008

Canadian Dairy Network

Lifetime Profit Index (LPI) Formula - January 2008 -

$$
\mathrm{LPI}=\begin{gathered}
\text { Production } \\
\text { Component } \\
\times \text { Emphasis } \\
\times \text { Factor }
\end{gathered}+\underset{\substack{\text { Durability } \\
\text { Component } \\
\times \text { Emphasis } \\
\times \text { Factor }}}{\text { Health \& Fertility }} \begin{gathered}
\text { Component } \\
\times \text { Emphasis } \\
\times \text { Factor }
\end{gathered}
$$

Where the relative emphasis placed on each of the three main components in each breed is presented in the following table along with the multiplicative factors for each component.

Breed	Production		Durability		Health \& Fertility	
	Emphasis	Factor	Emphasis	Factor	Emphasis	Factor
Ayrshire	54	1.0706	31	1.5112	15	2.0277
Brown Swiss	54	1.2177	31	1.4856	15	1.8362
Canadienne	54	1.3888	31	1.6263	15	1.7768
Guernsey	54	1.1352	31	1.6961	15	1.3654
Holstein	51	1.4683	34	1.5519	15	1.5104
Jersey	57	1.4719	33	1.4187	10	1.9919
Milking Shorthorn	54	1.5895	31	1.6025	15	2.5400

Production Component (PROD):

$$
P R O D=\left[W_{P Y X}\left(P Y-A v g_{P Y}\right) / S D_{P Y}\right]+\left[W_{P D} X P D / S D_{P D}\right]+\left[W_{F Y X}\left(F Y-A v g_{F Y}\right) / S D_{F Y}\right]+\left[W_{F D} X F D / S D_{F D}\right]
$$

Where PY = Protein Yield, PD = Protein Deviation, FY = Fat Yield and FD = Fat Deviation, which are standardized using the appropriate averages (Avg) and standard deviations (SD) and then multiplied by their respective relative weight (W), all of which are breed specific as outlined in the following table.

Parameter	Trait		$\begin{aligned} & \sum_{0}^{c} \begin{array}{c} \infty \\ 0 \\ 0.0 \\ \vdots \\ \vdots \end{array} \end{aligned}$		$\begin{aligned} & \text { 刃̀ } \\ & \stackrel{0}{c} \\ & 0 . \\ & 0 \end{aligned}$		¢	
EBV Averages ${ }^{1}$	Protein Yield Fat Yield	$\begin{aligned} & -2 \\ & -2 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline-4 \\ & -6 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 6 \end{aligned}$		$\begin{aligned} & \hline-3 \\ & -4 \end{aligned}$
EBV Standard Deviations	Protein Yield Protein Deviation Fat Yield Fat Deviation	$\begin{aligned} & \hline 16 \\ & .10 \\ & 20 \\ & .18 \end{aligned}$	$\begin{aligned} & 20 \\ & .10 \\ & 25 \\ & .17 \end{aligned}$	$\begin{gathered} \hline 8 \\ .17 \\ 13 \\ .23 \end{gathered}$	$\begin{aligned} & 21 \\ & .11 \\ & 25 \\ & .31 \end{aligned}$	$\begin{aligned} & 25 \\ & .12 \\ & 31 \\ & .30 \end{aligned}$	$\begin{aligned} & 25 \\ & .16 \\ & 34 \\ & .35 \end{aligned}$	$\begin{aligned} & 15 \\ & .09 \\ & 22 \\ & .19 \end{aligned}$
Relative Weights Within the Production Component	Protein Yield Protein Deviation Fat Yield Fat Deviation	$\begin{aligned} & 5.7 \\ & 0.3 \\ & 3.8 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 0.3 \\ & 3.8 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 0.9 \\ & 3.4 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 0.3 \\ & 3.8 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 0.3 \\ & 3.8 \\ & 0.2 \end{aligned}$	5.7 1.0 2.8 0.5	$\begin{aligned} & 5.1 \\ & 0.9 \\ & 3.4 \\ & 0.6 \end{aligned}$

Durability Component (DUR):

$$
\text { DUR }=\left[\mathrm{W}_{\mathrm{HL}} \times(\mathrm{HL}-100) / 5\right]+\left[\mathrm{W}_{\mathrm{MS}} \times \mathrm{MS} / 5\right]+\left[\mathrm{W}_{\mathrm{F} \mathrm{\& L}} \times \mathrm{F} \& \mathrm{~L} / 5\right]+\left[\mathrm{W}_{\mathrm{DS}} \times \mathrm{DS} / 5\right]
$$

Where HL = Herd Life, MS = Mammary System, F\&L = Feet and Legs, DS = Dairy Strength and each trait is standardized using the appropriate averages and standard deviations and then multiplied by their respective relative weight (W) that is breed specific as outlined in the following table.

Parameter	Trait	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$				듳 ¢ ¢ 운	¢ $\stackrel{\text { ¢ }}{\text { ¢ }}$ \sim	
Relative Weights	Herd Life	2.0	3.6	3.6	3.6	2.0	2.0	3.2
Within the	Mammary System	4.0	3.2	3.2	3.2	4.0	4.0	3.6
Durability	Feet \& Legs	3.0	2.4	2.4	2.4	3.0	3.0	2.4
Component	Dairy Strength	1.0	0.8	0.8	0.8	1.0	1.0	0.8

Health \& Fertility Component (H\&F):

$$
\begin{gathered}
\mathrm{H} \& \mathrm{~F}=\left[\mathrm{W}_{\mathrm{Scs}} \mathrm{x}-1 \times(\mathrm{SCS}-3.00) / 0.23\right]+\left[\mathrm{W}_{\mathrm{UD}} \times \mathrm{UD} / 5\right]+\left[\mathrm{W}_{\mathrm{MSP}} \times(\mathrm{MSP}-100) / 5\right]+ \\
{\left[\mathrm{W}_{\mathrm{DF}} \times(\mathrm{DF}-100) / 5\right]+\left[\mathrm{W}_{\mathrm{LP}} \times(\mathrm{LP}-100) / 5\right]}
\end{gathered}
$$

Where SCS = Somatic Cell Score, UD = Udder Depth, MSP = Milking Speed, DF = Daughter Fertility and LP = Lactation Persistency. The relative weights for each trait (i.e.: $\mathrm{W}_{\mathrm{scs}}, \mathrm{W}_{\mathrm{UD}}, \mathrm{W}_{\mathrm{MSP}}, \mathrm{W}_{\mathrm{DF}}$ and W_{LP} respectively), which are specific to each breed, are provided in the following table.

Parameter	Trait	$\xrightarrow{\text { U }}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\sim}{\circ} \\ & \stackrel{0}{0} \\ & \hline 0 \end{aligned}$	듳 ¢ ¢ 운	$\stackrel{\text { ¢ }}{\stackrel{\omega}{\omega}}$	
Relative Weights Within the Health \& Fertility Component	Somatic Cell Score	2.0	2.0	4.8	2.0	2.0	4.2	4.8
	Udder Depth	1.0	1.0	2.4	1.0	1.0	2.1	2.4
	Milking Speed	0.3	3.0	0.8	0.3	0.3	0.7	0.8
	Daughter Fertility	4.0	4.0	2.0	6.7	6.7	3.0	2.0
	Lactation Persistency	2.7	0.0	0.0	0.0	0.0	0.0	0.0

Application

The Lifetime Profit Index formula for each breed is applied to bulls and cows in Canada that have official genetic evaluations for production and type traits. In any case when an official genetic evaluation for a specific trait is not available, namely for Milking Speed or Daughter Fertility, the LPI is based on any preliminary genetic evaluation that is available or, otherwise, a value equal to breed average is used.

For foreign sires in the Holstein, Ayrshire, Jersey, Brown Swiss and Guernsey breeds that have MACE evaluations available for production and type traits, Somatic Cell Score, Direct Herd Life and female fertility traits, the LPI formula for the respective breed is used to compute MACE LPI (MLPI) values. In these cases, the MACE evaluation for Direct Herd Life is combined with a predicted Herd Life value based on MACE proofs for various traits and fixed values for Milking Speed and Lactation Persistency are used for all foreign bulls of the same breed.

Adjusting the Lifetime Profit Index Formula

From time to time, Canadian Dairy Network (CDN) initiates discussions with producers, industry personnel and technical experts regarding potential modifications to the Lifetime Profit Index (LPI) formula. Following such a process during 2007, the LPI formula used in each dairy breed will be changing starting with the January 2008 genetic evaluation release. What are the important adjustments applied for each breed and how do they affect genetic selection decisions?

Forces for Change

The main goal of the LPI formula in each breed is that it results in desired rates of genetic progress for traits of importance in achieving the overall breed improvement objectives. The last LPI update in February 2005 introduced Daughter Fertility as part of the Health \& Fertility component, which received 10% emphasis within the LPI formula. The recent review of the LPI formula concentrated on an analysis of the relationship between proofs for each individual trait and the resulting LPI. In particular, feedback from producers and industry clearly indicated a desire to increase the relative emphasis placed on the Health \& Fertility component of the formula for all breeds except Jersey. In addition, each breed reviewed the traits to be included in the Health \& Fertility component as well as the relative weights of traits within the Durability and/or Production components. Depending on the breed, specific attention was placed on evaluating the importance of Daughter Fertility and Herd Life in the LPI formula since these are traits of growing importance to most producers.

New Relative Weights

Table 1 provides a summary of the new LPI formula for each breed showing the traits and relative weights included in each of the three components as well as the relative weight of each component in the LPI formula. Within the production component, Jerseys increased the weight on protein relative to fat and the Canadienne breed placed more emphasis on components instead of yields. For Durability, the Holstein, Ayrshire and Jersey breeds made no modification while the other breeds all increased the relative emphasis on Herd Life to approximately one-third of the Durability component, which decreases the direct contribution of Mammary System, Feet \& Legs and Dairy Strength. For the Health \& Fertility component, the Holstein and Guernsey breeds placed all of the additional 5\% emphasis directly on Daughter Fertility while the other breeds partitioned this increased weight across other traits. Of particular note is the additional of Lactation Persistency within the Health \& Fertility component for Ayrshires and the increased relative weight on Milking Speed for Brown Swiss, with both changes reflecting the genetic improvement goals of the respective breed. With the increased emphasis on the Health \& Fertility component in all breeds except Jersey, the relative emphasis on the Production and Durability components were reduced proportionally. The exception here was the Ayrshire breed whereby all of the added weight on Health \& Fertility was moved from the Durability component.

Table 1: Relative Emphasis of Traits Within Each Component and Each Component in LPI

Component	Trait	HO	AY	JE	BS	GU	CN	MS
Production	Protein Yield	57	57	57	57	57	51	51
	Protein Deviation	3	3	10	3	3	9	9
	Fat Yield	38	38	28	38	38	34	34
	Fat Deviation	2	2	5	2	2	6	6
	Emphasis in LPI	51\%	54\%	57\%	54\%	54\%	54\%	54\%
Durability	Herd Life	20	20	20	36	36	36	32
	Mammary System	40	40	40	32	32	32	36
	Feet \& Legs	30	30	30	24	24	24	24
	Dairy Strength	10	10	10	8	8	8	8
	Emphasis in LPI	34\%	31\%	33\%	31\%	31\%	31\%	31\%
Health \& Fertility	Somatic Cell Score	20	20	42	20	20	48	48
	Udder Depth	10	10	21	10	10	24	24
	Milking Speed	3	3	7	30	3	8	8
	Daughter Fertility	67	40	30	40	67	20	20
	Lactation Persistency		27					
	Emphasis in LPI	15\%	15\%	10\%	15\%	15\%	15\%	15\%

Impact on Genetic Improvement
A less known fact is that selection for LPI can also lead to genetic progress for traits not in the formula as long as they have a positive genetic relationship with LPI. Table 2 provides correlations in each breed between LPI and bull proofs for various traits with higher percentages meaning they are strongly related. In general, traits in the LPI formula have a positive correlation with the resulting LPI or, minimally, have received enough emphasis in the formula to prevent undesirable negative correlations. For example, the current weight on Daughter Fertility in Holsteins and Ayrshires has yielded correlations near zero or slightly better with LPI. On the other hand, traits such as Daughter Calving Ability have a positive correlation with LPI in most breeds even though it is not directly in the LPI formula. This phenomenon occurs due to correlations with traits that are in the formula so selection for LPI improves all traits with a positive relationship.

Table 2: Correlations Between LPI and Bull Proofs for Individual Traits							
	Holstein	Ayrshire	Jersey	Brown Swiss	Guernsey	Canadienne	Milking Shorthorn
LPI - Production	78	89	78	86	80	90	85
LPI - Durability	62	68	36	66	43	81	59
LPI - Health \& Fertility	7	21	10	33	40	23	35
Milk Yield	55	79	59	74	58	87	64
Fat Yield	65	86	72	81	83	85	79
Protein Yield	71	87	74	84	70	93	76
Fat Deviation	8	~ 0	~ 0	11	36	-31	47
Protein Deviation	11	7	13	~ 0	13	-49	11
Conformation	57	57	40	62	15	38	45
Mammary System	55	57	42	54	13	50	47
Feet \& Legs	45	53	32	43	22	36	8
Dairy Strength	31	34	34	58	~ 0	11	42
Rump	10	9	10	5	~ 0	~ 0	11
Lactation Persistency	10	~ 0	7	20	36	18	63
Somatic Cell Score*	20	46	21	26	37	40	57
Herd Life	29	50	~ 0	37	44	54	64
Milking Speed	10	16	~ 0	14	27	-7	-14
Milking Temperament	~ 0	15	~ 0	-21	-17	71	-11
Calving Ability	20	20	-11	~ 0	~ 0	~0	38
Daughter Calving Ability	14	6	7	20	38	-12	-60
Daughter Fertility	~ 0	6	11	22	33	-49	18
Note: Correlations with Somatic Cell Score have been reversed such that a positive value is desirable.							

Summary

The January 2008 genetic evaluation release will see the introduction of a modified LPI formula for each breed. While specific changes vary across breeds, the general trend is increased emphasis on the Health \& Fertility component and on Daughter Fertility in particular. The new LPI formula will be applied to sires with official domestic proofs or with MACE evaluations, to cows and to heifers and young sires based on their Parent Averages. Selection for LPI will yield genetic progress for most traits of importance within each breed.

Author: Brian Van Doormaal
Date: December 2007

Provincial Brown Swiss Club Reports

Ontario Greetings to Brown Swiss breeders across Canada! We would like to express our thanks to everyone who participated in the Royal Brown Swiss

 show last year. You have shown with your excellent quality and enthusiasm that Brown Swiss breeders are continuing to improve the breed.We are looking forward to hosting the Annual General Meeting of the C.B.S.B.A. from March 27-29 at Kanata, which is near Ottawa. It will be a different experience this year, so come to the meeting and tour some farms in Eastern Ontario. For more information, contact Lori Bates at (705)4280255.

I would like to make a correction to the Kincardine Fair results which I sent to the Canadian office. Junior Champion was Norbella Parker Nirvana and Reserve Junior Champiom was Gubelman Draft Deanna.

We thank our 2007 Board of Directors for their dedication, and welcome the new board:

- Ernst Gubelmann (519)527-2396
- Markus Daetrwyler (519)595-4874
- David and Lori Bates (705)428-0255
- Harold Jelinski (705)4242515
- Romy Signer (519)638-3287

Best wishes to all for 2008. We hope to see you at our nation's capital in the spring.

```
A New Start Wridale
The foundation has started from the "Flower" Family
Chapter - Fantasee -
Maternal sisters from
* Maycco Fantasee (Excellent)
    4th Generation Excellent
    5-6 365 2X 30140 4.6% 1386 3.8% 1151
* Maycoo Lady Fantasee
    Sired by: Blessing Emory Eros
    1st 3 Yr Old - Best Bred & Owned - RWF 2007
    Reserve Int. Champion - RWF 2007
* Maycco Flirt
    Sired by: Forest Lawn Simon Jetway
    A full sister to Maycco Flaterlee
    Very Good-88 at 2 yrs
    2-2 337 2X 16529 4.3% 713 3.6% 592
```

This chapter has just begun! Pay Attention!! Welcome to the Club
Harold and Todd of Wridale Farms, Durham, Ontario

For embryo interest or a piece of the action, contact:

Select Farm \& Export Services Inc.	
R. R. 1, Hanover, Ontario, Canada, N4N 3B8	
,	Office: 519-369-6000
	Fax: 519-369-2110
	Email: bulltel@on.aibn.com
Specializing in all dairy breeds	
Harold Wright	Todd Wright
Office/Home 519-369-6000	Cell: 519-369-4280
Home: 519-369-6160	Cell: 519-369-4808

A quote from the Good Book...

"TA Today"
Not how much you pay for animal It is what you do with it when at home!

May Farm

Royal Winter Fair 2007

Premier Breeder Banner 2007 Res. Grand Champion - 1st Aged Cow Res. Int. Champion - 1st 3 Yr Old 1st Spring Heifer Calf 1st Produce of Dam (Fantasee)

A big thanks to all who helped!
Maycco Fantasee (EX) is the dam of 3 daughters that all won their class at the Royal Winter Fairy 2007.
How many times has this happened??
Show and Foundation Females - Embryos - Herd Sires Available.
[The Breeding Shows]

New Adddition at JSF
James S. Farrell = Ripley, Ont.

* Maycco Carmello

Very Good @ 2 Yrs
2-4 362 2X 19719 5.4\% 1065 4.0\% 785
1st 4 Yr Old - Kincardine - 2007
Res. Grand Champion Kincardine - 2007
Her Daughter: Maycco Carmine
Her full sister: Maycco Clarisso
Sired by: Maycco Fargo (Very Good 88)
(Jetway x Starbuck x Jade) Dam is: Maycco Clarissa (EX) 1st Summer Ylg - RWF-2000
Sired by: Maycco Faultless (VG) A full brother to: Finelee (EX) Next dam sired by: Maycco Flint (VG) A full brother to: Fashion (EX)

A real nice Family! Stop and see them.

From the Flower Family

To Ferme Baronets

* Maycco Fanny (EX)

4-11 $3642 X 224624.8 \% 10693.9 \% 871$
Sired by: Forest Lawn TJ Rhythm (EX)
Dam is: Maycco Fancy (Very Good-87)
8-0 365 2X 20698 4.3\% 924 3.6\% 777
Next dam: Maycco Fashion (EX)
6-3 $3652 \times 315063.8 \% 12103.5 \% 1096$
Next dam: Lyndale Jade Flower (EX)
4-11 3562 X 17282 4.7\% 804 4.0\% 684
Next 2 dams Excellent with up to 19640 4.1\% 803

* Maycco Fandango (VG)

Sired by: Maycco Fargo (Very Good-88)
(Jetway X Starbuck X Jade)
Dam is: Maycco Fanny (Excellent)
Fandango was 1st Sr Calf and Jr Champion
Western Spring Expo 2004
Just scored December 2007
Fanny - EX-2E - Fandango VG-87

Keep Your Eyes Open Here!!

(Best of Luck to Leonard and his family with Fanny and Fandango)

Thanks to Serge Bilodeau for his help in this transaction and others.

To all Breeders
and Brown Swiss People
A Very Very Good 2008!

Get Your Brown Swiss Classified

Classification Schedule February 2008-April 2008

Early February

On - Durham
On - mid round: Middlesex, Essex, Kent, Elgin
Qc - Chateauguay, Lapointe, Dubuc, Charlevoix, Beauharnois, Laprairie, Napierville, St. Jean Qc - mid round: Arthabaska, Megantic Alberta: mid round

Mid February

On - Northumberland, Victoria, Peterborough, Lennox \& Addington, Hastings, Prince Edward
Qc - Iberville
Qc - mid round: Wolfe, Riviere Du Loup, Temiscouata,
Rimouski, Matapedia, Matane, Bonaventure
Manitoba: mid round

Late February

On - Frontenac, Waterloo
Qc - Missisquoi, Brome, Shefford, Richmond, Sherbrooke, Compton, Stanstead

Early March

On - mid round: Oxford
Qc - Frontenac
Qc - mid round: Lotbiniere, Nicolet, Yamaska
PE, NB, NS \& NL
Mid March
On - Wellington, Thunder Bay, Northern Ontario, Dundas
Qc - Beauce

Late March

On - mid round: Perth
On - Stormont, Glengarry

Saskatchewan

Early April

On - Niagara, Wentworth, Brant, Haldimand Norfolk
Qc - Dorchester, Quebec, Montmorency, Bellechasse Qc - mid round: Drummond, Bagot, St. Hyacinthe, Richelieu, Vercheres, Rouville, Labelle, Papineau,

Gatineau, Argenteuil, Pontiac, Deux Montagnes,

Terrebonne

Mid April

On - Prescott, Russell, Carleton
Qc - Levis, Montmagny
Qc - mid round: Abitibi, Temiscamingue

Late April

On - mid round: Leeds, Grenville, Renfrew, Lanark Qc - L'slet, Kamouraska

If you would like to start classifying your Brown Swiss, contact the Classification department of Holstein Canada at (519) 756-8300

Fees:
$\$ 11.00+\$ 2.00$ levy per animal plus $\$ 75.00$ herd fee + gst
Mid Round is an additional $\$ 100.00$

The Semex Alliance is pleased to announce its 3rd Annual Photo Contest. We're looking for new, exciting photos to use in Semex promotions such as Semex calendars, posters, brochures, website and much more.

In 2007 over 300 photographs, from three Canadian provinces, 10 US States, Colombia, Germany, Costa Rica, Mexico, Belgium, Portugal, Switzerland, Australia, Brazil, Sweden and the United Kingdom vied for top honours.

This year's categories are as follows:

- PEOPLE AND THEIR SEMEX COWS
- LANDSCAPES WITH SEMEX COWS

Preference will be given to photographs that include cows and will be judged on composition, quality and character of image, suitability and/or creativity in relation to a category theme and overall impression of the photo.

Prizes will be awarded in each category as follows:

- 1st Prize: $\$ 500$ Canadian
- 2nd Prize: $\$ 250$ Canadian
- 3rd Prize: $\$ 100$ Canadian.

All entries must be received by August 1, 2008. Visit www.semex.com to enter contest, and for full contest rules, terms and conditions.

From the Secretary Manager's Desk .

Greetings to everyone, hopefully the year 2008 has begun superbly for you! As much of the current information will be discussed at the Annual General Meeting or will be part of the package sent to you following the AGM I will only highlight a few points of interest.
Over the last few years, there have been an increasing number of registrations submitted to CLRC where the sire has not been entered into the Canadian herd book. Please make sure when purchasing semen that the supplier has completed the appropriate paperwork with CLRC. This will save you time and effort when applying for registration for the resulting offspring.
In speaking with the Royal Winter Fair office today, the staff is once again undergoing changes to improve the week including show dates and times. It is looking like the 2008 Brown Swiss Show will be on the Friday morning, however this to may change.
SMA testing will be available shortly through the Maxxam Lab in Guelph, the same lab that processes the SMA test-
ing for Brown Swiss U.S.A. My understanding of the process is the paperwork will be initiated through the Association office and results forwarded to the members. Further details will follow shortly once confirmed.
The Association had a great year financially due to the grant money received for various projects completed. Both registrations and transfers were down slightly this past year however the annual and life memberships remained the same with only the junior membership being down by three.
New Association clothing will be available at the Annual General Meeting for those interested in purchasing an article of clothing to promote the breed. The new classification posters created by the Quebec Brown Swiss club will also be available at the time of the AGM. Make sure to book your hotel room early and plan to enjoy a few days with your Brown Swiss/Braunvieh friends at the AGM. See you in March at the AGM!

Jessie Weir

Secretary Manager

- Tattoo letter for 2008 is \mathbf{U}.
- If you have cattle or embryos for sale please send a list to the office so interested parties requesting this information can be made aware.
- Suggestions, comments, stories, jokes, articles that would be of interest in the newsletter are always welcome.
- Rates for Placing a Newsletter Advertisement;
Business Card Ad $\quad \$ 25.00$ Quarter Page Ad $\quad \$ 65.00$ Half Page Ad $\$ 125.00$ Pre-Approved Stuffers $\$ 250.00$
" At your convenience please check
out our web-site; www.rkde.com/browncow

CANADIAN BROWN SWISS / BRAUNVIEH

Attention: All Brown Swiss \& Braunvieh Breeders

This is a reminder for the Canadian Brown Swiss/Braunvieh Annual meeting! The Ontario club will be hosting the meeting in Kanata, which is near Ottawa. Here is a schedule of events planned:

Thursday March 27-7 p.m.

- Wine \& Cheese \& Welcome's

Friday March 28-8:30 a.m.

- Registration for meeting 9 a.m. annual meeting to begin 7 p.m. Banquet followed by awards, entertainment and fun auction Saturday March 29 - Barn Tour Day We will be going first to Bill Butler's farm and then on to the Drummonds in Shawville, Que.

We want to encourage everyone to come out and enjoy a few days of mingling with fellow breeders, meet some new breeders, or maybe just catch up with old friends and neighbors. Consider bringing the whole family to our Nations' capital. Take in some of the great attractions that are found in and around the Ottawa area!

We have reserved a block of rooms at the Country Inn \& Suites in Kanata. They are located at 578 Terry Fox Drive, Kanata, Ontario Phone \# 613-599-7787 This beautiful hotel offers a deluxe continental breakfast, indoor pool, exercise room and much more. When you call to reserve your room, mention that you are with the Brown Swiss Association to receive your special rate.

We look forward to seeing you all, especially the Eastern Ontario breeders! Remember to bring an item with you for the fun auction. Also, it would be very helpful to know if you will be coming just for the day on Friday as we need to have an approximate number to give to the caterer.

[^0]: 1 BSCANF37776 2 BSCANF37252
 3
 4
 BSCANF37085
 5

[^1]: 1 - Base change for LPI is based on a direct calculation as for each of the individual traits
 2 - Traits expressed on scale of Relative Breeding Values.
 3 - For Somatic Cell Score only, negative base change values represent a desirable trend in genetic progress.

